Ilan Halachmi

Johannes Bender

Kirezi Kanoba

Merewyn Loder

Sezer Öz

Monica De Prado

Paniagua

Ivan Pavlik

Jan Venneman

Marco Allegrini

Antonella

Chiariotti

Raymond Kelly

Tommy Boland

Jan Erpenbach

Jean-Louis

Peyraud

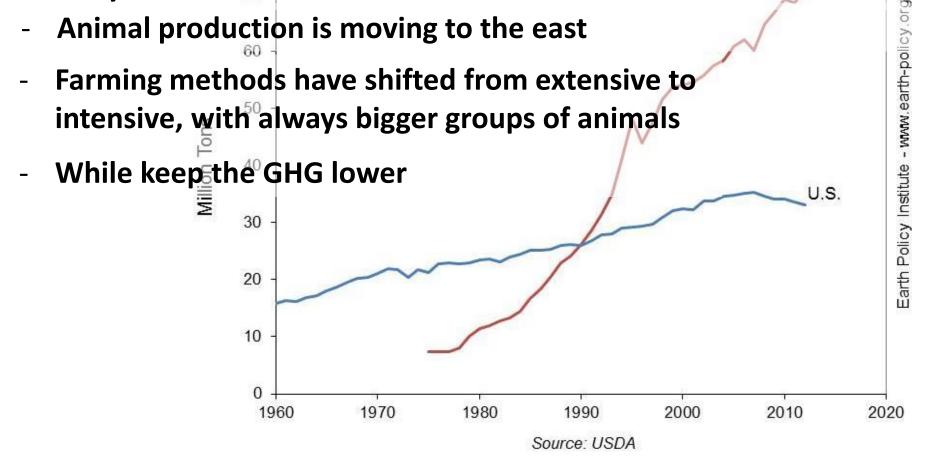
Alireza Bayat

Leen Vandaele

Patrizia Herrmann

Meeting outline

What are the challenges?


What are the Strategies?

What are the burning research questions?

What are the challenges / Opportunity)?

Global demand for meat and milk will grow 40% in the next 15 years

- Animal production is moving to the east
- Farming methods have shifted from extensive to intensive, with always bigger groups of animals

Meat Consumption in China and the US, 1960-2012

Halachmi@volcani.agri.gov.,il PLF Lab. ARO. Israel; Cell +972-(0)506-220112

What are the challenges / Opportunity)?

Global demand for meat and milk:

- will grow 40% in the next 15 years
- Absolute growth of 126 million tons

While arable area will decline -6.5% and lower GHG

Source: Food and Agriculture Organization of the United Nations, ESA Working Paper No. 12-03, p. 131

Halachmi@volcani.agri.gov.,il PLF Lab. ARO. Israel; Cell +972-(0)506-220112

Brain storming!

Each one has a strong opinion

Vote I

What are the challenges / Opportunity)?

- 1. Accurate measurements and measurement techniques (sensing) also for CH4 and N2O (9)
- 2. Rumen process knowledge and difficulty in modification of the rumen microbiome (7)
- 3. Demand grow 40% while arable land will decline -6.5% and keeping the GHG lower --- > intensive and sustainable farming systems
- 4. Try to be more ambitious in finding new mitigation techniques
- 5. More research on fermentation pathways in order to find more potent inhibitors and combine with some potent hydrogen sinks
- 6. Widen rumen knowledge and research/immunology (2)

What are the challenges / Opportunity) 2?

- a. More efficient utilization of non-conventional forages and natural flora, as way to decrease gas production and increase the energy efficiency, in cows.
- b. Communicate these important topics with farmers more in details
- c. Measurement techniques for CH4 and N2O (2)
- d. Raising awareness of farmers and society for the need to decrease GHG's
- e. Holistic approach with mapping GHG's within specie systems; to compare systems. Including land use etc. Between species not important.

f Brooding should always be involved the thinking about solutions and

What are the strategy / technology?

A range of animal sensing technologies and strategy such as:

- 1. Early life intervention to program the rumen microbiome (7)
- 2. Breeding and nutrition strategies should be combined (5)
- 3. sensors (machine vision, accelerometers, real-time location...), machine learning, big data, signal processing (9)
- 4. Data collection and real-time interpretation (3)
- 5. caring and manage the smallest production unit
- 6. Early-life intervention to modify rumen microbiome (3)
- 7. Feeding strategies per specie. Diet manipulation (Reducing carbohydrate ingredients of diet (alternatives) (
- 8. Holistic approach/combations strategies (look further than CH4) considering trade offs (2)
- Q Modular approach (con combination) tailor made to

What are the burning research questions?

- Efficient animal production: (1)
 - a. Accurate measurements, data analysis
 - b. Rumen microbiome
 - c. individual feed efficiency and GHG (1)
 - d. new mitigation techniques
 - e. Strong need of long term studies (in several different fields)

f. (1)