

Sveriges lantbruksuniversitet Swedish University of Agricultural Sciences

On the role of forests and the forest sector for climate change mitigation in Sweden

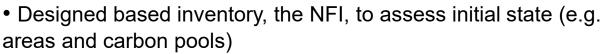
Petersson, H; Ellison, D.; Appiah Mensah, A; Berndes, G; Egnell, G; Lundblad, M; Lundmark, T; Lundström, A; Stendahl, J; Wikberg, P.E.

Accepted manuscript

FACCE ERA-GAS Breakfast Club, project FORCLIMIT 2022-03-25

Research questions, we analyse:

 the role of forests and forestry by comparing how atmospheric CO2 concentrations are affected over different time scales by carbon storage in forests and HWPs, and by substitution (given a fixed management system)


• forest protection, nature conservation and their long-term impacts on forestbased climate change mitigation

 the potential for increased fertilization to sustainably increase net CO2 substitution and removals

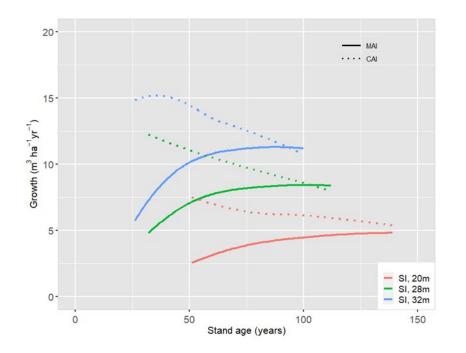
• the potential benefits and/or increased risks associated with a changing climate on mitigation

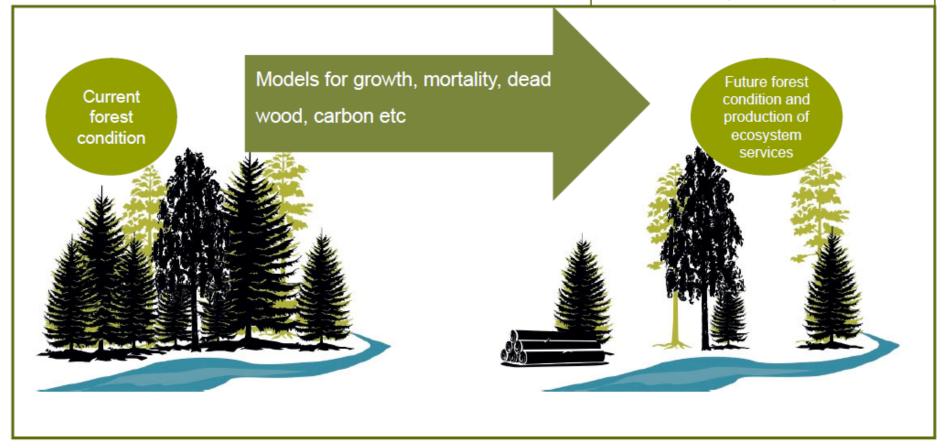
 the differences between the real effect of forests and forestry on atmospheric CO2 concentrations and the reported and accounted climate reporting estimates implied by different accounting frameworks

Starting point 2010 (2008-2012)

• Carefully measure on the plots – then the uncertainty arises from that a sample and not the entire population is monitored. No bias and the accuracy can be controlled

- Accuracy change in living biomass: 3 Mton CO2/yr, <2%
- All land use categories (30000 permanent + temporary plots)
- Soil inventory less intense
- Same as the Swedish Forest Reference Level

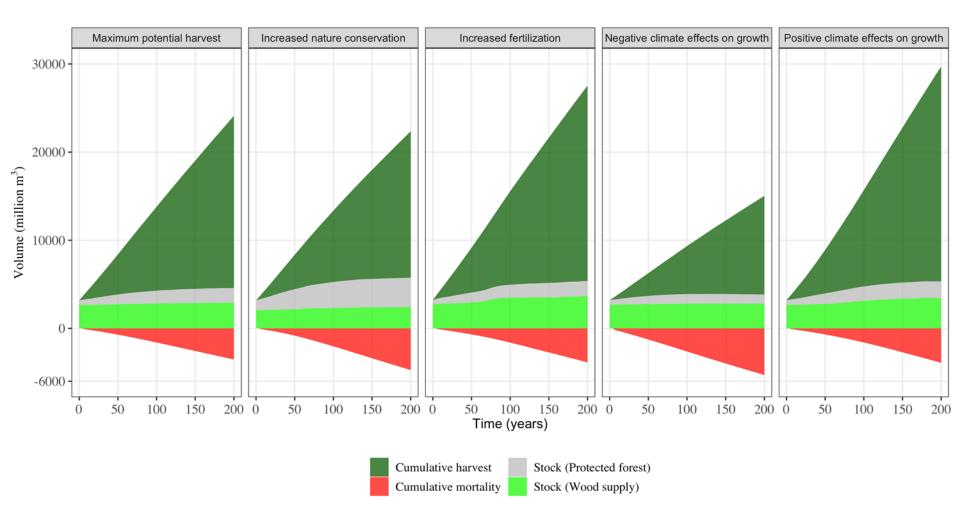



General assumptions scenarios

- To maximise the removal (tree growth), when should we harvest?
- When the MAI peaks = when the CAI and MAI crosses
- In all scenarios we harvest the net growth in forest used for wood supply and no harvest in forest not used for wood supply
 To reach a net removal of zero in all carbon pools we make simulations for 200 years

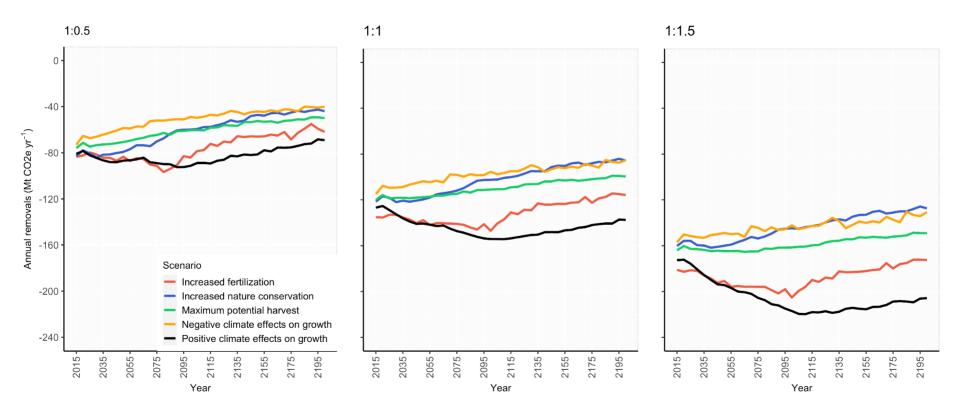
RegWise simulation model Heureka

Alternative 1, Period 1, Stand 1



Scenarios	Objectives
Maximum Potential Harvest	Base scenario
Increased Nature Conservation	Study effects of increasing forest land set-asides (3.7 Mha)
Increased fertilization	Fertilisation (restricted by law)
Negative Climate Effects on Growth	Double mortality
Positive Climate Effects on Growth	Growth based on IPCC RCP 4.5 scenario

SLU V


Volume stem wood (numbers refers to all carbon pools after peak)

⁻⁹⁹ Mton CO2/år -85 Mton CO2/år -112 Mton CO2/år

The potential of fertilization and of increasing the substitution efficiency are high

Reporting, accounting and climate benefits are different

Sweden MFL 2021-2025

NET change in pools [M tonne CO2/yr]							
UNFCCC Reporting					long	short	
Sweden MFL 2021-2025	living	soil	other	dead	lived	lived	REPORTED
Scenario	biomass	litter	emissions	wood	HWP	HWP	Total
Maximum Potential Harvest	-16,9	-5,4	0,1	-4,3	-3,9	-0,2	-30,7
Increased Nature Conservation	-33,3	-5,3	0,1	-2,7	-2,0	0,3	-42,9
Increased fertilization	-9,3	-4,7	0,1	-7,7	-6,1	-1,2	-28,9
Negative Climate Effects on Growth	-10,6	-5,7	0,1	-5,6	-3,3	-0,1	-25,2
Positive Climate Effects on Growth	-19,1	-5,8	0,1	-5,6	-4,4	-0,5	-35,3

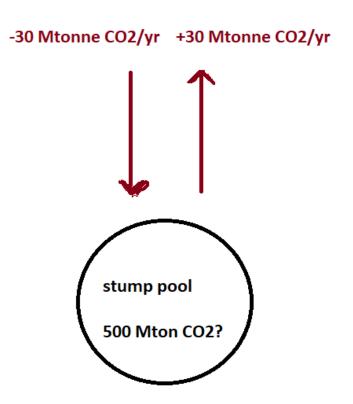
"1 m3 to 0.5	
tonne CO2"	Total
substitution	Climate
Harvest	Effect
-44,0	-75
-37,6	-81
-50,8	-80
-42,1	-67
-46,8	-82

"1 m3 to 1	
tonne CO2"	Total
substitution	Climate
Harvest	Effect
-88,1	-119
-75,3	-118
-101,7	-131
-84,2	-109
-93.6	-129

	NET change in pools relative to the required Reference Level						
EU Accounting	[M tonne	CO2/yr]			long	short	
Sweden MFL 2021-2025	living	soil	other	dead	lived	lived	ACCOUNTED
Scenario	biomass	litter	emissions	wood	HWP	HWP	Total
Maximum Potential Harvest	13,4	-4,0	0,0	-1,6	-0,6	0,8	8,1
Increased Nature Conservation	-3,1	-3,8	0,0	0,1	1,3	1,4	-1,1
Increased fertilization	20,9	-3,2	0,0	-5,0	-2,8	-0,1	9,9
Negative Climate Effects on Growth	19,6	-4,2	0,0	-2,8	0,0	1,0	13,5
Positive Climate Effects on Growth	11,1	-4,3	0,0	-2,9	-1,1	0,6	3,4
Reference Levels (effective caps)	-30,2	-1,5	0,1	-2,7	-3,3	-1,1	-38,7
<u> </u>	(cap)	(cap)	(cap)	(no cap)	(no cap)	(cap)	(Total FRL)

Remove cap on MFL, one accounting model for all land, full flexibilities and no separate LULUCF pillar

The potential of reducing harvest may be zero but the potential of increasing growth is high


• Increased nature conservation vs. Maximum potential harvest (another 3.7 Mha conserved area)

• Increased fertilisation vs. Maximum potential harvest (fertilize

0.2 Mha ten years before final felling)

	tonneCO2/yr*m3					
	decreased	increased				
	harvest	production				
	conservation	fertilization				
2020	-0,10		-1,46			
2040	-0,25		-1,49			
2060	0,09		-1,67			
2200	0,88		-1,54			

1 m3 stemwood = 0,75 tonne whole tree biomass x 0.5 C x 44/12 CO2 = 1,4 tonne CO2

